Loop Statistics in the Toroidal Honeycomb Dimer Model
نویسنده
چکیده
The dimer model on a graph embedded in the torus can be interpreted as a collection of random self-avoiding loops. In this paper, we consider the uniform toroidal honeycomb dimer model. We prove that when the mesh of the graph tends to zero and the aspect of the torus is fixed, the winding number of the collection of loops converges in law to a two-dimensional discrete Gaussian distribution. This is known to physicists in more generality from their analysis of toroidal two-dimensional critical loop models and their mapping to the massless free field on the torus. This paper contains the first mathematical proof of this more general physics result in the specific case of the loop model induced by a toroidal dimer model.
منابع مشابه
Topological degeneracy and vortex manipulation in Kitaev's honeycomb model.
The classification of loop symmetries in Kitaev's honeycomb lattice model provides a natural framework to study the Abelian topological degeneracy. We derive a perturbative low-energy effective Hamiltonian that is valid to all orders of the expansion and for all possible toroidal configurations. Using this form we demonstrate at what order the system's topological degeneracy is lifted by finite...
متن کاملHeight fluctuations in the honeycomb dimer model Richard Kenyon
We study a model of random crystalline surfaces arising in the dimer model on the honeycomb lattice. For a fixed “wire frame” boundary condition, as the lattice spacing ǫ → 0, Cohn, Kenyon and Propp [3] showed the almost sure convergence of a random surface to a non-random limit shape Σ0. We show here that when Σ0 has no facets, for a large family of boundary conditions approximating the wire f...
متن کاملHamilton-Laceability of Honeycomb Toriodal graphs
In this paper, we build on the work of Alspach, Chen, and Dean [2] who showed that proving the hamiltonicity of the Cayley graph of the the dihedral group Dn reduces to showing that certain cubic, connected, bipartite graphs (called honeycomb toroidal graphs) are hamilton laceable; that is, any two vertices at odd distance from each other can be joined by a hamilton path. Alspach, Chen, and Dea...
متن کاملHeight fluctuations in the honeycomb dimer model
We study a model of random surfaces arising in the dimer model on the honeycomb lattice. For a fixed “wire frame” boundary condition, as the lattice spacing ǫ → 0, Cohn, Kenyon and Propp [3] showed the almost sure convergence of a random surface to a non-random limit shape Σ0. In [11], Okounkov and the author showed how to parametrize the limit shapes in terms of analytic functions, in particul...
متن کاملOn the Hamiltonian Laceability of Honeycomb Toroidal Graphs
The Honeycomb toroidal graph is a highly symmetric, vertex-transitive, bipartite graph which has been investigated for certain properties including pan-cyclicity and Hamilton laceability. The main focus of this project was to construct generalised methods for finding Hamilton paths and thus provide a proof of Hamilton laceability for this graph. The resulting proof was successful for a subset o...
متن کامل